
Evolutionary algorithms

• Simple genetic algorithms

• Evolutionary Strategies

• Genetic Programming

Partially based on slides by Thomas Bäck

Heuristic Search
SAT solvers, CP solvers, ILP solvers:

find exact solutions to constraint optimization
problems

can be time consuming
Heuristic solvers:

employ “heuristics”: guidelines for finding good
solutions quickly

don't find exact solutions
can be much faster

Hill-Climbing

Hill-climbing is arguably the simplest heuristic
algorithm

1. S = arbitrary candidate solution
2. S' = solutions in the neighborhood of S
3. if best solution in S' is not better than S then stop
4. let S be the best solution in S'
5. go to 2.

Other Well-known
Heuristic Search Strategies
Simulated annealing
Tabu search
Evolutionary algorithms

genetic algorithms
genetic programming
evolutionary strategies

Artificial ants
Particle swarms

Genetic algorithms
Randomized search algorithms based on

mechanics of natural selection and genetics

Principle of natural selection through `survival of
the fittest’ with randomized search

Advantages of GAs
Evolution and natural selection has proven to be a

robust method

A “black box” approach that can easily be applied to
many optimization problems

GAs can be easily parallelized and run on multiple
machines

Some definitions
Population: a collection of solutions for the studied

(optimization) problem
Individual: a single solution in a GA
Chromosome (genotype): representation for a

single solution
Gene: part of a chromosome, usually representing a

variable as part of the solution

Some definitions
Encoding: conversion of a solution to its equivalent

representation (chromosome)
Decoding: conversion of a chromosome (genotype)

to its equivalent solution (phenotype)
Fitness: scalar value denoting the suitability of a

solution

Generation t

1 0 0 0

0 0 1 1

0 1 1 0

0 1 0 1

0 1 0 1

po
p

u
l a

ti
on

x y

gene

chromosome

individual

solution fitness
(2,0)

(1,1)

(0,3)

(1,2)

(1,1)

4

2

3

3

2

Genetic Algorithm

Fitness Function

Assess Fitness

Selection

Crossover

Mutation

Increment Generation

Define Initial Population

Parents

Best Individuals
Children

Pseudo code
Initialize population P:

E.g. generate random p solutions

Evaluate solutions in P:
determine for all h ∈ P, Fitness(h)

While terminate is FALSE
Generate new generation P using genetic operators
Evaluate solutions in P

Return solution h ∈ P with the highest Fitness

Termination criteria
Number of generations

(restart GA if best solution is not satisfactory)

Fitness of best individual

Average fitness of population

Difference of best fitness (across generations)

Difference of average fitness (across generations)

Reproduction
Three steps:
Selection
Crossover
Mutation

In GAs, the population size is often kept constant. User
is free to choose which methods to use for all three
steps.

1
16%

2
23%

3
11%

4
7%

5
19%

6
24%

1
2
3
4
5
6

01100
10001
11010
00111
11000
10110

01100
10001
10001
11000
10110
10110

34
48
23
15
41
50

selection

fitnessindividuals

Sum = 211

p = 0.16
p = 0.23
p = 0.11
p = 0.07
p = 0.19
p = 0.24

Cumulative probability: 0.16, 0.39, 0.50, 0.57, 0.76, 1.00

Tournament selection
Select pairs randomly
Fitter individual wins

deterministic
probabilistic

 constant probability of winning
 probability of winning depends on fitness

It is also possible to combine tournament selection with
roulette-wheel

Crossover
Exchange parts of chromosome with a crossover

probability (pc is usually about 0.8)
Select crossover points randomly

One-point crossover:
0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover point

0 1 0 1 1 1 1 1 1 1 0

0 1 1 1 0 1 0 1 0 1 1

N-point crossover
Select N points for exchanging parts
Exchange multiple parts
Two-point crossover:

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover points

0 1 0 1 0 1 0 1 0 1 1

0 1 1 1 1 1 1 1 1 1 0

Uniform crossover
Exchange bits using a randomly generated mask

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

0 1 0 1 1 1 0 1 0 1 0

0 1 1 1 0 1 1 1 1 1 1

0 1 0 1 0 0 1 0 0 1 1 mask

Mutation
Crossover is used to search the solution space
Mutation is needed to escape from local optima
Introduces genetic diversity
Mutation is rare (pm is about 0.005)

Uniform mutation:

0 1 0 1 1 1 1 1 1 1 0

0 1 0 1 1 1 0 1 1 1 0

mutated bit

10010110
01100010
10100100
10011001
01111101

. . .

. . .

. . .

. . .

10010110
01100010
10100100
10011101
01111001

. . .

. . .

. . .

. . .

SelectionSelection CrossoverCrossover MutationMutation

Current
generation

Next
generation

Elitism

reproduction

01100
10001
11010
00111
11000
10110

01011
10111
11001
00011
11010
01010

12
17
26
 7
24
22

34
48
23
15
41
50

genetic-
operators

(de)coding fitness functiongeneration N

generation N+1

gene-space
(genotype)

problem-space
(phenotype) fitness-space

Encoding and decoding

Common coding methods for numbers

simple binary coding

Gray coding (binary)

real valued coding (evolutionary strategies)

tree structures (genetic programming)

	FEM 31001 Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Genetic algorithms
	Advantages of GAs
	Some definitions
	Slide 9
	GA terminology
	Genetic algorithm
	Pseudo code
	Termination criteria
	Reproduction
	Roulette-wheel selection
	Slide 16
	Tournament selection
	Crossover
	N-point crossover
	Uniform crossover
	Mutation
	GA iteration
	Spaces in GA iteration
	Encoding and decoding

