
Evolutionary algorithms

• Simple genetic algorithms 

• Evolutionary Strategies

• Genetic Programming

Partially based on slides by Thomas Bäck



Heuristic Search
SAT solvers, CP solvers, ILP solvers:

find exact solutions to constraint optimization 
problems

can be time consuming
Heuristic solvers:

employ “heuristics”: guidelines for finding good 
solutions quickly

don't find exact solutions
can be much faster



Hill-Climbing

Hill-climbing is arguably the simplest heuristic 
algorithm

1. S = arbitrary candidate solution
2. S' = solutions in the neighborhood of S
3. if best solution in S' is not better than S then stop
4. let S be the best solution in S'
5. go to 2.



Other Well-known
Heuristic Search Strategies
Simulated annealing
Tabu search
Evolutionary algorithms

genetic algorithms
genetic programming
evolutionary strategies

Artificial ants
Particle swarms



Genetic algorithms
Randomized search algorithms based on 

mechanics of natural selection and genetics

Principle of natural selection through `survival of 
the fittest’ with randomized search



Advantages of GAs
Evolution and natural selection has proven to be a 

robust method 

A “black box” approach that can easily be applied to 
many optimization problems

GAs can be easily parallelized and run on multiple 
machines



Some definitions
Population: a collection of solutions for the studied 

(optimization) problem
Individual: a single solution in a GA
Chromosome (genotype): representation for a 

single solution
Gene: part of a chromosome, usually representing a 

variable as part of the solution



Some definitions
Encoding: conversion of a solution to its equivalent 

representation (chromosome)
Decoding: conversion of a chromosome (genotype) 

to its equivalent solution (phenotype)
Fitness: scalar value denoting the suitability of a 

solution
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Genetic Algorithm

Fitness Function

Assess Fitness

Selection

Crossover

Mutation

Increment Generation

Define Initial Population

Parents

Best Individuals
Children



Pseudo code
Initialize population P:

E.g. generate random p solutions

Evaluate solutions in P:
determine for all h ∈ P, Fitness(h)

While terminate is FALSE
Generate new generation P using genetic operators
Evaluate solutions in P

Return solution h ∈ P with the highest Fitness



Termination criteria
Number of generations

(restart GA if best solution is not satisfactory)

Fitness of best individual

Average fitness of population

Difference of best fitness (across generations)

Difference of average fitness (across generations)



Reproduction
Three steps:
Selection
Crossover
Mutation

In GAs, the population size is often kept constant. User 
is free to choose which methods to use for all three 
steps.
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Tournament selection
Select pairs randomly
Fitter individual wins

deterministic
probabilistic

 constant probability of winning
 probability of winning depends on fitness

It is also possible to combine tournament selection with 
roulette-wheel



Crossover
Exchange parts of chromosome with a crossover 

probability (pc is usually about 0.8)
Select crossover points randomly

One-point crossover:
0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover point

0 1 0 1 1 1 1 1 1 1 0

0 1 1 1 0 1 0 1 0 1 1



N-point crossover
Select N points for exchanging parts
Exchange multiple parts
Two-point crossover:

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover points

0 1 0 1 0 1 0 1 0 1 1

0 1 1 1 1 1 1 1 1 1 0



Uniform crossover
Exchange bits using a randomly generated mask

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

0 1 0 1 1 1 0 1 0 1 0

0 1 1 1 0 1 1 1 1 1 1

0 1 0 1 0 0 1 0 0 1 1 mask



Mutation
Crossover is used to search the solution space
Mutation is needed to escape from local optima
Introduces genetic diversity
Mutation is rare (pm is about 0.005)

Uniform mutation:

0 1 0 1 1 1 1 1 1 1 0

0 1 0 1 1 1 0 1 1 1 0

mutated bit
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Encoding and decoding

Common coding methods for numbers

simple binary coding

Gray coding (binary)

real valued coding (evolutionary strategies)

tree structures (genetic programming)
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