
Evolutionary algorithms

• Simple genetic algorithms

• Evolutionary Strategies

• Genetic Programming

Partially based on slides by Thomas Bäck

Heuristic Search
SAT solvers, CP solvers, ILP solvers:

find exact solutions to constraint optimization
problems

can be time consuming
Heuristic solvers:

employ “heuristics”: guidelines for finding good
solutions quickly

don't find exact solutions
can be much faster

Hill-Climbing

Hill-climbing is arguably the simplest heuristic
algorithm

1. S = arbitrary candidate solution
2. S' = solutions in the neighborhood of S
3. if best solution in S' is not better than S then stop
4. let S be the best solution in S'
5. go to 2.

Other Well-known
Heuristic Search Strategies
Simulated annealing
Tabu search
Evolutionary algorithms

genetic algorithms
genetic programming
evolutionary strategies

Artificial ants
Particle swarms

Genetic algorithms
Randomized search algorithms based on

mechanics of natural selection and genetics

Principle of natural selection through `survival of
the fittest’ with randomized search

Advantages of GAs
Evolution and natural selection has proven to be a

robust method

A “black box” approach that can easily be applied to
many optimization problems

GAs can be easily parallelized and run on multiple
machines

Some definitions
Population: a collection of solutions for the studied

(optimization) problem
Individual: a single solution in a GA
Chromosome (genotype): representation for a

single solution
Gene: part of a chromosome, usually representing a

variable as part of the solution

Some definitions
Encoding: conversion of a solution to its equivalent

representation (chromosome)
Decoding: conversion of a chromosome (genotype)

to its equivalent solution (phenotype)
Fitness: scalar value denoting the suitability of a

solution

Generation t

1 0 0 0

0 0 1 1

0 1 1 0

0 1 0 1

0 1 0 1

po
p

u
l a

ti
on

x y

gene

chromosome

individual

solution fitness
(2,0)

(1,1)

(0,3)

(1,2)

(1,1)

4

2

3

3

2

Genetic Algorithm

Fitness Function

Assess Fitness

Selection

Crossover

Mutation

Increment Generation

Define Initial Population

Parents

Best Individuals
Children

Pseudo code
Initialize population P:

E.g. generate random p solutions

Evaluate solutions in P:
determine for all h ∈ P, Fitness(h)

While terminate is FALSE
Generate new generation P using genetic operators
Evaluate solutions in P

Return solution h ∈ P with the highest Fitness

Termination criteria
Number of generations

(restart GA if best solution is not satisfactory)

Fitness of best individual

Average fitness of population

Difference of best fitness (across generations)

Difference of average fitness (across generations)

Reproduction
Three steps:
Selection
Crossover
Mutation

In GAs, the population size is often kept constant. User
is free to choose which methods to use for all three
steps.

1
16%

2
23%

3
11%

4
7%

5
19%

6
24%

1
2
3
4
5
6

01100
10001
11010
00111
11000
10110

01100
10001
10001
11000
10110
10110

34
48
23
15
41
50

selection

fitnessindividuals

Sum = 211

p = 0.16
p = 0.23
p = 0.11
p = 0.07
p = 0.19
p = 0.24

Cumulative probability: 0.16, 0.39, 0.50, 0.57, 0.76, 1.00

Tournament selection
Select pairs randomly
Fitter individual wins

deterministic
probabilistic

 constant probability of winning
 probability of winning depends on fitness

It is also possible to combine tournament selection with
roulette-wheel

Crossover
Exchange parts of chromosome with a crossover

probability (pc is usually about 0.8)
Select crossover points randomly

One-point crossover:
0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover point

0 1 0 1 1 1 1 1 1 1 0

0 1 1 1 0 1 0 1 0 1 1

N-point crossover
Select N points for exchanging parts
Exchange multiple parts
Two-point crossover:

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover points

0 1 0 1 0 1 0 1 0 1 1

0 1 1 1 1 1 1 1 1 1 0

Uniform crossover
Exchange bits using a randomly generated mask

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

0 1 0 1 1 1 0 1 0 1 0

0 1 1 1 0 1 1 1 1 1 1

0 1 0 1 0 0 1 0 0 1 1 mask

Mutation
Crossover is used to search the solution space
Mutation is needed to escape from local optima
Introduces genetic diversity
Mutation is rare (pm is about 0.005)

Uniform mutation:

0 1 0 1 1 1 1 1 1 1 0

0 1 0 1 1 1 0 1 1 1 0

mutated bit

10010110
01100010
10100100
10011001
01111101

. . .

. . .

. . .

. . .

10010110
01100010
10100100
10011101
01111001

. . .

. . .

. . .

. . .

SelectionSelection CrossoverCrossover MutationMutation

Current
generation

Next
generation

Elitism

reproduction

01100
10001
11010
00111
11000
10110

01011
10111
11001
00011
11010
01010

12
17
26
 7
24
22

34
48
23
15
41
50

genetic-
operators

(de)coding fitness functiongeneration N

generation N+1

gene-space
(genotype)

problem-space
(phenotype) fitness-space

Encoding and decoding

Common coding methods for numbers

simple binary coding

Gray coding (binary)

real valued coding (evolutionary strategies)

tree structures (genetic programming)

	FEM 31001 Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Genetic algorithms
	Advantages of GAs
	Some definitions
	Slide 9
	GA terminology
	Genetic algorithm
	Pseudo code
	Termination criteria
	Reproduction
	Roulette-wheel selection
	Slide 16
	Tournament selection
	Crossover
	N-point crossover
	Uniform crossover
	Mutation
	GA iteration
	Spaces in GA iteration
	Encoding and decoding

