Evolutionary algorithms

Simple genetic algorithms
Evolutionary Strategies

Genetic Programming

Partially based on slides by Thomas Back



Heuristic Search

SAT solvers, CP solvers, ILP solvers:

® find exact solutions to constraint optimization
problems

® can be time consuming

Heuristic solvers:

® employ “heuristics”: guidelines for finding good
solutions quickly

® don't find exact solutions
® can be much faster




Hill-Climbing

Hill-climbing is arguably the simplest heuristic
algorithm

1. S = arbitrary candidate solution

2. S' = solutions in the neighborhood of S

3. if best solution in S’ is not better than S then stop
4. let S be the best solution in S’

5. go to 2.




“Other Well-known
Heuristic Search Strategies

Simulated annealing

Tabu search
Evolutionary algorithms

® genetic algorithms
® genetic programming
® evolutionary strategies

Artificial ants

Particle swarms




Genetic algorithms

Randomized search algorithms based on
mechanics of natural selection and genetics

Principle of natural selection through 'survival of
the fittest’ with randomized search
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Advantages of GAs

Evolution and natural selection has proven to be a
robust method

A “black box” approach that can easily be applied to
many optimization problems

GAs can be easily parallelized and run on multiple
machines




Some definitions

Population: a collection of solutions for the studied
(optimization) problem

Individual: a single solution in a GA

Chromosome (genotype): representation for a
single solution

Gene: part of a chromosome, usually representing a
variable as part of the solution




Some definitions

Encoding: conversion of a solution to its equivalent
representation (chromosome)

Decoding: conversion of a chromosome (genotype)

to its equivalent solution (phenotype)

Fitness: scalar value denoting the suitability of a
solution
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enetic algorithm

Define Initial Population

Increment Generation

'

Fitness Function

Assess Fitness

Selection

Mutation

~

Crossover

- Genetic Algorithm




Pseudo code

Initialize population P:

® E.g. generate random p solutions

Evaluate solutions in P:
® determine for all h O P, Fitness(h)

While terminate is FALSE

® Generate new generation P using genetic operators

® Evaluate solutions in P

Return solution h I P with the highest Fitness




Termination criteria

Number of generations
(restart GA if best solution is not satisfactory)

Fitness of best individual

Average fitness of population

Difference of best fitness (across generations)

Difference of average fitness (across generations)




Reproduction

Three steps:
Selection
Crossover

Mutation

In GAs, the population size is often kept constant. User
is free to choose which methods to use for all three
steps.




Roulette-wheel selection
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Roulette-wheel selection

individuals fitness

p=0.16] 01100 34
p=0.23 10001 48

b 01 e Sek’&}

p=0.07| 00111 15
p=0.19| 11000 41
p=024 10110 50

Sum =211
Cumulative probability: 0.16, 0.39, 0.50, 0.57, 0.76, 1.00




Tournament selection

Select pairs randomly

Fitter individual wins
® deterministic
® probabilistic
® constant probability of winning

® probability of winning depends on fitness

It is also possible to combine tournament selection with
roulette-wheel
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Crossover
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Exchange parts of chromosome with a crossover
probability (p, is usually about 0.8)

Select crossover points randomly
One-point crossovex:
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" N-point crossover

Select N points for exchanging parts
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Exchange multiple parts
Two-point crossover:

crossover points
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Uniform crossover

hange bits using a randomly generated mask

o/1/0(0|1/0/0]|1|1 mask

O/ 111|110 |1]|1

110, 1,01 /110
1|1




Mutation

Crossover is used to search the solution space
Mutation is needed to escape from local optima

Introduces genetic diversity

Mutation is rare (p, is about 0.005)
Uniform mutation:

0,10 1/1|1

mutated bit
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paces in GA iteration

gene-space problem-space
(genotype) (phenotype) : :
01100 12 34
10001 17 fitness function 48
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“Encoding and decoding

Common coding methods for numbers
® simple binary coding
® Gray coding (binary)
® real valued coding (evolutionary strategies)

® tree structures (genetic programming)
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