Evolutionary algorithms

- Simple genetic algorithms
- Evolutionary Strategies
- Genetic Programming

Partially based on slides by Thomas Bäck

Heuristic Search

- SAT solvers, CP solvers, ILP solvers:
 - find exact solutions to constraint optimization problems
 - can be time consuming
- Heuristic solvers:
 - employ "heuristics": guidelines for finding good solutions quickly
 - don't find exact solutions
 - can be much faster

Hill-Climbing

- Hill-climbing is arguably the simplest heuristic algorithm
- 1. *S* = arbitrary candidate solution
- 2. S' = solutions in the neighborhood of S
- 3. **if** best solution in *S*′ is not better than *S* **then** stop
- 4. let *S* be the best solution in *S*'
- 5. go to 2.

Other Well-known Heuristic Search Strategies

- Simulated annealing
- Tabu search
- Evolutionary algorithms
 - genetic algorithms
 - genetic programming
 - evolutionary strategies
- Artificial ants
- Particle swarms

Genetic algorithms

- Randomized search algorithms based on mechanics of natural selection and genetics
- Principle of natural selection through `survival of the fittest' with randomized search

Advantages of GAs

- Evolution and natural selection has proven to be a robust method
- A "black box" approach that can easily be applied to many optimization problems
- GAs can be easily parallelized and run on multiple machines

Some definitions

- Population: a collection of solutions for the studied (optimization) problem
- Individual: a single solution in a GA
- Chromosome (genotype): representation for a single solution
- Gene: part of a chromosome, usually representing a variable as part of the solution

Some definitions

- **Encoding**: conversion of a solution to its equivalent representation (chromosome)
- Decoding: conversion of a chromosome (genotype) to its equivalent solution (phenotype)
- Fitness: scalar value denoting the suitability of a solution

GA terminology

Generation t

Genetic algorithm

Pseudo code

- Initialize population P:
 - E.g. generate random p solutions
- Evaluate solutions in *P*:
 - determine for all $h \in P$, Fitness(h)
- While terminate is FALSE
 - Generate new generation P using genetic operators
 - Evaluate solutions in P
- **Return** solution $h \in P$ with the highest Fitness

Termination criteria

- Number of generations (restart GA if best solution is not satisfactory)
- Fitness of best individual
- Average fitness of population
- Difference of best fitness (across generations)
- Difference of average fitness (across generations)

Reproduction

- Three steps:
- Selection
- Crossover
- Mutation

In GAs, the population size is often kept constant. User is free to choose which methods to use for all three steps.

Roulette-wheel selection

individuals fitness

Sum = 211

Cumulative probability: 0.16, 0.39, 0.50, 0.57, 0.76, 1.00

Tournament selection

- Select pairs randomly
- Fitter individual wins
 - deterministic
 - probabilistic
 - constant probability of winning
 - probability of winning depends on fitness

It is also possible to combine tournament selection with roulette-wheel

Crossover

0

- Exchange parts of chromosome with a crossover probability (p_c is usually about 0.8)
- Select crossover points randomly
 One-point crossover:

crossover point

0 1 0 1 1 1 1 1 1 0

0 1 1 1 0 1 0 1 0 1 1

N-point crossover

- Select N points for exchanging parts
- Exchange multiple parts
 Two-point crossover:

Uniform crossover

Exchange bits using a randomly generated mask
 0
 1
 0
 1
 0
 1
 0
 1
 1
 1

Mutation

- Crossover is used to search the solution space
- Mutation is needed to escape from local optima
- Introduces genetic diversity
- Mutation is rare (p_m is about 0.005)
 Uniform mutation:

GA iteration

Spaces in GA iteration

Encoding and decoding

- Common coding methods for numbers
 - simple binary coding
 - Gray coding (binary)
 - real valued coding (evolutionary strategies)
 - tree structures (genetic programming)